一直对多线程编程这一块很陌生,决定花一点时间整理一下。

c++多线程编程

os:ubuntu 10.04 c++

1.最基础,进程同时创建5个线程,各自调用同一个函数

#include <tream>
#include <pthread.h> //多线程相关操作头文件,可移植众多平台
 
using namespace std;
 
#define NUM_THREADS 5 //线程数
 
void* say_hello( void* args )
{
 cout << "hello..." << endl;
} //函数返回的是函数指针,便于后面作为参数
int main()
{
 pthread_t tids[NUM_THREADS]; //线程id
 for( int i = 0; i < NUM_THREADS; ++i )
 {
 int ret = pthread_create( &tids[i], NULL, say_hello, NULL ); //参数:创建的线程id,线程参数,
 线程运行函数的起始地址,运行函数的参数
 if( ret != 0 ) //创建线程成功返回0
 {
 cout << "pthread_create error:error_code=" << ret << endl;
 }
 }
 pthread_exit( NULL ); //等待各个线程退出后,进程才结束,否则进程强制结束,线程处于未终止的状态
}

输入命令:g++ -o muti_thread_test_1 muti_thread_test_1.cpp -lpthread

注意:

1)此为c++程序,故用g++来编译生成可执行文件,并且要调用处理多线程操作相关的静态链接库文件pthread。

2)-lpthread 编译选项到位置可任意,如g++ -lpthread -o muti_thread_test_1 muti_thread_test_1.cpp

3)注意gcc和g++的区别,转到此文:点击打开链接

测试结果:

wq@wq-desktop:~/coding/muti_thread$ ./muti_thread_test_1
hello...hello...
hello...
hello...
 
hello...
wq@wq-desktop:~/coding/muti_thread$ ./muti_thread_test_1
hello...hello...hello...
 
hello...
hello...权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/hitwengqi/article/details/8015646
wq@wq-desktop:~/coding/muti_thread$ ./muti_thread_test_1
hello...hello...hello...
hello...
hello...

可知,两次运行的结果会有差别,这不是多线程的特点吧?这显然没有同步?还有待进一步探索...

多线程的运行是混乱的,混乱就是正常?

2.线程调用到函数在一个类中,那必须将该函数声明为静态函数函数

因为静态成员函数属于静态全局区,线程可以共享这个区域,故可以各自调用。

#include <iostream>
#include <pthread.h>
 
using namespace std;
 
#define NUM_THREADS 5
 
class Hello
{
public:
 static void* say_hello( void* args )
 {
 cout << "hello..." << endl;
 }
};
int main()
{
 pthread_t tids[NUM_THREADS];
 for( int i = 0; i < NUM_THREADS; ++i )
 {
 int ret = pthread_create( &tids[i], NULL, Hello::say_hello, NULL );
 if( ret != 0 )
 {
 cout << "pthread_create error:error_code" << ret << endl;
 }
 }
 pthread_exit( NULL );
}

测试结果

wq@wq-desktop:~/coding/muti_thread$ ./muti_thread_test_2
hello...
hello...
hello...
hello...
hello...
wq@wq-desktop:~/coding/muti_thread$ ./muti_thread_test_2
hello...hello...hello...
hello...
hello...

3.如何在线程调用函数时传入参数呢?

先看下面修改的代码,传入线程编号作为参数:

#include <iostream>
#include <pthread.h> //多线程相关操作头文件,可移植众多平台
 
using namespace std;
 
#define NUM_THREADS 5 //线程数
 
void* say_hello( void* args )
{
 int i = *( (int*)args ); //对传入的参数进行强制类型转换,由无类型指针转变为整形指针,再用*读取其指向到内容
 cout << "hello in " << i << endl;
} //函数返回的是函数指针,便于后面作为参数
int main()
{
 pthread_t tids[NUM_THREADS]; //线程id
 cout << "hello in main.." << endl;
 for( int i = 0; i < NUM_THREADS; ++i )
 {
 int ret = pthread_create( &tids[i], NULL, say_hello, (void*)&i ); //传入到参数必须强转为void*类型,即无类型指针,&i表示取i的地址,即指向i的指针
 cout << "Current pthread id = " << tids[i] << endl; //用tids数组打印创建的进程id信息
 if( ret != 0 ) //创建线程成功返回0
 {
 cout << "pthread_create error:error_code=" << ret << endl;
 }
 }
 pthread_exit( NULL ); //等待各个线程退出后,进程才结束,否则进程强制结束,线程处于未终止的状态
}

测试结果:

wq@wq-desktop:~/coding/muti_thread$ ./muti_thread_test_3
hello in main..
Current pthread id = 3078458224
Current pthread id = 3070065520
hello in hello in 2
1
Current pthread id = hello in 2
3061672816
Current pthread id = 3053280112
hello in 4
Current pthread id = hello in 4
3044887408

显然不是想要的结果,调用顺序很乱,这是为什么呢?

这是因为多线程到缘故,主进程还没开始对i赋值,线程已经开始跑了...?

修改代码如下:

#include <iostream>
#include <pthread.h> //多线程相关操作头文件,可移植众多平台
 
using namespace std;
 
#define NUM_THREADS 5 //线程数
 
void* say_hello( void* args )
{
 cout << "hello in thread " << *( (int *)args ) << endl;
} //函数返回的是函数指针,便于后面作为参数
int main()
{
 pthread_t tids[NUM_THREADS]; //线程id
 int indexes[NUM_THREADS]; //用来保存i的值避免被修改
 for( int i = 0; i < NUM_THREADS; ++i )
 {
 indexes[i] = i;
 int ret = pthread_create( &tids[i], NULL, say_hello, (void*)&(indexes[i]) );
 if( ret != 0 ) //创建线程成功返回0
 {
 cout << "pthread_create error:error_code=" << ret << endl;
 }
 }
 for( int i = 0; i < NUM_THREADS; ++i )
 pthread_join( tids[i], NULL ); //pthread_join用来等待一个线程的结束,是一个线程阻塞的函数
}

测试结果:

wq@wq-desktop:~/coding/muti_thread$ ./muti_thread_test_
3hello in thread hello in thread hello in thread hello in thread hello in thread 30124

这是正常的吗?感觉还是有问题...待续

代码中如果没有pthread_join主线程会很快结束从而使整个进程结束,从而使创建的线程没有机会开始执行就结束了。加入pthread_join后,主线程会一直等待直到等待的线程结束自己才结束,使创建的线程有机会执行。

4.线程创建时属性参数的设置pthread_attr_t及join功能的使用

线程的属性由结构体pthread_attr_t进行管理。

typedef struct
{
 int detachstate; 线程的分离状态
 int schedpolicy; 线程调度策略
 struct sched_param schedparam; 线程的调度参数
 int inheritsched; 线程的继承性 
 int scope; 线程的作用域 
 size_t guardsize; 线程栈末尾的警戒缓冲区大小 
 int stackaddr_set; void * stackaddr; 线程栈的位置 
 size_t stacksize; 线程栈的大小
}pthread_attr_t;
#include <iostream>
#include <pthread.h>
 
using namespace std;
 
#define NUM_THREADS 5
 
void* say_hello( void* args )
{
 cout << "hello in thread " << *(( int * )args) << endl;
 int status = 10 + *(( int * )args); //线程退出时添加退出的信息,status供主程序提取该线程的结束信息
 pthread_exit( ( void* )status ); 
}
int main()
{
 pthread_t tids[NUM_THREADS];
 int indexes[NUM_THREADS];
 
 pthread_attr_t attr; //线程属性结构体,创建线程时加入的参数
 pthread_attr_init( &attr ); //初始化
 pthread_attr_setdetachstate( &attr, PTHREAD_CREATE_JOINABLE ); //是设置你想要指定线程属性参数,这个参数表明这个线程是可以join连接的,join功能表示主程序可以等线程结束后再去做某事,实现了主程序和线程同步功能
 for( int i = 0; i < NUM_THREADS; ++i )
 {
 indexes[i] = i;
 int ret = pthread_create( &tids[i], &attr, say_hello, ( void* )&( indexes[i] ) );
 if( ret != 0 )
 {
	 cout << "pthread_create error:error_code=" << ret << endl;
	}
 } 
 pthread_attr_destroy( &attr ); //释放 
 void *status;
 for( int i = 0; i < NUM_THREADS; ++i )
 {
	int ret = pthread_join( tids[i], &status ); //主程序join每个线程后取得每个线程的退出信息status
	if( ret != 0 )
	{
	 cout << "pthread_join error:error_code=" << ret << endl;
	}
	else
	{
	 cout << "pthread_join get status:" << (long)status << endl;
	}
 }
}

测试结果:

wq@wq-desktop:~/coding/muti_thread$ ./muti_thread_test_4
hello in thread hello in thread hello in thread hello in thread 0hello in thread 321
4
pthread_join get status:10
pthread_join get status:11
pthread_join get status:12
pthread_join get status:13
pthread_join get status:14

5.互斥锁的实现

互斥锁是实现线程同步的一种机制,只要在临界区前后对资源加锁就能阻塞其他进程的访问。

#include <iostream>
#include <pthread.h>
using namespace std;
#define NUM_THREADS 5
int sum = 0; //定义全局变量,让所有线程同时写,这样就需要锁机制
pthread_mutex_t sum_mutex; //互斥锁
void* say_hello( void* args )
{
 cout << "hello in thread " << *(( int * )args) << endl;
 pthread_mutex_lock( &sum_mutex ); //先加锁,再修改sum的值,锁被占用就阻塞,直到拿到锁再修改sum;
 cout << "before sum is " << sum << " in thread " << *( ( int* )args ) << endl;
 sum += *( ( int* )args );
 cout << "after sum is " << sum << " in thread " << *( ( int* )args ) << endl;
 pthread_mutex_unlock( &sum_mutex ); //释放锁,供其他线程使用
 pthread_exit( 0 ); 
}
int main()
{
 pthread_t tids[NUM_THREADS];
 int indexes[NUM_THREADS];
 
 pthread_attr_t attr; //线程属性结构体,创建线程时加入的参数
 pthread_attr_init( &attr ); //初始化
 pthread_attr_setdetachstate( &attr, PTHREAD_CREATE_JOINABLE ); //是设置你想要指定线程属性参数,这个参数表明这个线程是可以join连接的,join功能表示主程序可以等线程结束后再去做某事,实现了主程序和线程同步功能
 pthread_mutex_init( &sum_mutex, NULL ); //对锁进行初始化 
 for( int i = 0; i < NUM_THREADS; ++i )
 {
 indexes[i] = i;
 int ret = pthread_create( &tids[i], &attr, say_hello, ( void* )&( indexes[i] ) ); //5个进程同时去修改sum
 if( ret != 0 )
 {
	 cout << "pthread_create error:error_code=" << ret << endl;
	}
 } 
 pthread_attr_destroy( &attr ); //释放内存 
 void *status;
 for( int i = 0; i < NUM_THREADS; ++i )
 {
	int ret = pthread_join( tids[i], &status ); //主程序join每个线程后取得每个线程的退出信息status
	if( ret != 0 )
	{
	 cout << "pthread_join error:error_code=" << ret << endl;
	}
 }
 cout << "finally sum is " << sum << endl;
 pthread_mutex_destroy( &sum_mutex ); //注销锁
}

测试结果:

wq@wq-desktop:~/coding/muti_thread$ ./muti_thread_test_5
hello in thread hello in thread hello in thread 410
before sum is hello in thread 0 in thread 4
after sum is 4 in thread 4hello in thread 
2
3
before sum is 4 in thread 1
after sum is 5 in thread 1
before sum is 5 in thread 0
after sum is 5 in thread 0
before sum is 5 in thread 2
after sum is 7 in thread 2
before sum is 7 in thread 3
after sum is 10 in thread 3
finally sum is 10

可知,sum的访问和修改顺序是正常的,这就达到了多线程的目的了,但是线程的运行顺序是混乱的,混乱就是正常?

6.信号量的实现

信号量是线程同步的另一种实现机制,信号量的操作有signal和wait,本例子采用条件信号变量pthread_cond_t tasks_cond;

信号量的实现也要给予锁机制。

#include <iostream>
#include <pthread.h>
#include <stdio.h>
 
using namespace std;
 
#define BOUNDARY 5
 
int tasks = 10;
pthread_mutex_t tasks_mutex; //互斥锁
pthread_cond_t tasks_cond; //条件信号变量,处理两个线程间的条件关系,当task>5,hello2处理,反之hello1处理,直到task减为0
 
void* say_hello2( void* args )
{
 pthread_t pid = pthread_self(); //获取当前线程id
 cout << "[" << pid << "] hello in thread " << *( ( int* )args ) << endl;
 
 bool is_signaled = false; //sign
 while(1)
 {
	pthread_mutex_lock( &tasks_mutex ); //加锁
	if( tasks > BOUNDARY )
	{
	 cout << "[" << pid << "] take task: " << tasks << " in thread " << *( (int*)args ) << endl;
 	 --tasks; //modify
	}
	else if( !is_signaled )
	{
	 cout << "[" << pid << "] pthread_cond_signal in thread " << *( ( int* )args ) << endl;
	 pthread_cond_signal( &tasks_cond ); //signal:向hello1发送信号,表明已经>5
	 is_signaled = true; //表明信号已发送,退出此线程
	}
	pthread_mutex_unlock( &tasks_mutex ); //解锁
	if( tasks == 0 )
	 break;
 } 
}
 
void* say_hello1( void* args )
{
 pthread_t pid = pthread_self(); //获取当前线程id
 cout << "[" << pid << "] hello in thread " << *( ( int* )args ) << endl;
 while(1)
 {
 pthread_mutex_lock( &tasks_mutex ); //加锁
 if( tasks > BOUNDARY )
 {
	 cout << "[" << pid << "] pthread_cond_signal in thread " << *( ( int* )args ) << endl;
	 pthread_cond_wait( &tasks_cond, &tasks_mutex ); //wait:等待信号量生效,接收到信号,向hello2发出信号,跳出wait,执行后续 
 }
 else
 {
	 cout << "[" << pid << "] take task: " << tasks << " in thread " << *( (int*)args ) << endl;
 --tasks;
	}
 pthread_mutex_unlock( &tasks_mutex ); //解锁
 if( tasks == 0 )
 break;
 } 
}
int main()
{
 pthread_attr_t attr; //线程属性结构体,创建线程时加入的参数
 pthread_attr_init( &attr ); //初始化
 pthread_attr_setdetachstate( &attr, PTHREAD_CREATE_JOINABLE ); //是设置你想要指定线程属性参数,这个参数表明这个线程是可以join连接的,join功能表示主程序可以等线程结束后再去做某事,实现了主程序和线程同步功能
 pthread_cond_init( &tasks_cond, NULL ); //初始化条件信号量
 pthread_mutex_init( &tasks_mutex, NULL ); //初始化互斥量
 pthread_t tid1, tid2; //保存两个线程id
 int index1 = 1;
 int ret = pthread_create( &tid1, &attr, say_hello1, ( void* )&index1 );
 if( ret != 0 )
 {
 cout << "pthread_create error:error_code=" << ret << endl;
 }
 int index2 = 2;
 ret = pthread_create( &tid2, &attr, say_hello2, ( void* )&index2 );
 if( ret != 0 )
 {
 cout << "pthread_create error:error_code=" << ret << endl;
 }
 pthread_join( tid1, NULL ); //连接两个线程
 pthread_join( tid2, NULL ); 
 pthread_attr_destroy( &attr ); //释放内存 
 pthread_mutex_destroy( &tasks_mutex ); //注销锁
 pthread_cond_destroy( &tasks_cond ); //正常退出
}

测试结果:

先在线程2中执行say_hello2,再跳转到线程1中执行say_hello1,直到tasks减到0为止。

wq@wq-desktop:~/coding/muti_thread$ ./muti_thread_test_6
[3069823856] hello in thread 2
[3078216560] hello in thread 1[3069823856] take task: 10 in thread 2
 
[3069823856] take task: 9 in thread 2
[3069823856] take task: 8 in thread 2
[3069823856] take task: 7 in thread 2
[3069823856] take task: 6 in thread 2
[3069823856] pthread_cond_signal in thread 2
[3078216560] take task: 5 in thread 1
[3078216560] take task: 4 in thread 1
[3078216560] take task: 3 in thread 1
[3078216560] take task: 2 in thread 1
[3078216560] take task: 1 in thread 1
胜象大百科